6.线性回归实现
约 102 字小于 1 分钟
2025-09-20
from sklearn.datasets import fetch_california_housing
data = fetch_california_housing()
X = data.data
y = data.targetfrom sklearn.model_selection import train_test_split一元线性回归
## 使用线性回归
X = fetch_california_housing().data
X.shape
# X = X[:,0]
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
X_train.shape,X_test.shape,y_train.shape,y_test.shape运行结果
((16512, 8), (4128, 8), (16512,), (4128,))
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train,y_train)
lr.score(X_test,y_test)运行结果
0.575787706032453
## 多元线性回归也是相同